WASSERSTOFFSPEICHERUNG MITTELS REVERSIBLER ZINK-GASERZEUGUNGSZELLEN ZN-H2

Robert Hahn, Fraunhofer IZM

ZnH2 - eine neue Form der Wasserstoffspeicherung

Maciej Satora, Fraunhofer IWU

Netzwerkveranstaltung DurcH2atmen

22.11.2022

INHALT

History

- Cooperation with Hydrogen Lab Görlitz (HLG)
- The principal function
- Demonstrator first ideas

PRELIMINARY WORK AT FRAUNHOFER IZM

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2018) I-II

Ultrashort-pulse laser structured titanium surfaces with sputter-coated platinum catalyst as hydrogen evolution electrodes for alkaline water electrolysis

Andreas Gabler^a, Christian I. Müller^b, Thomas Rauscher^c, Thomas Gimpel^d, Robert Hahn^e, Michael Köhring^a, Bernd Kieback^{b,c}, Lars Röntzsch^{b,*}, Wolfgang Schade^{a,d}

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 40 (2015) 5340-5345

Small fuel cell system with cartridges for controlled hydrogen generation

Robert Hahn^{*}, Andreas Gabler¹, Axel Thoma, Fabian Glaw, K.-D. Lang Fraunhofer IZM, Gustav-Meyer-Allee 25, 13355 Berlin, Germany

Preliminary Work at Fraunhofer IZM

Since 2018 testing of catalyst and charging protocols for industrial partners

Hydrogen Lab Görlitz Use of Görlitz facilities for a rapid technology development

Overarching goals:

- Active support of the Lusatian structural change through further development of the Lausitz energy region
- Strengthening and creation of existing and new economic sectors, prospects and jobs
- Test facility for different hydrogen technologies – ZnH2 System!

Main topics:

- Innovative solutions for large-scale industrial hydrogen technologies
- National testing and certification center for hydrogen technologies

Advantages of the Zn-H2 storage system

- Two times overall efficiency of electricity storage compared to power to gas
- 30 times lower materials cost compared to lithium-ion batteries
- Storage energy density comparable to lithium-ion
- Scalable to GWh energy storage

intern

THE STORAGE PRINCIPLE

- during charge Zn is deposited and O₂ generated
- during discharge the cell acts like a battery that delivers electricity at low voltage and generates hydrogen

SYSTEM COMPARISON WITH TRADITIONAL ELECTROCHEMICAL STORAGE: ZINC AIR BATTERY

Elektrolyt und Separator

(e)

 $Zn \rightarrow Zn^{2+} + 2e$

Zink-

anode

© ©

e

Gasdiffusior

Elektrode

UN (Sauerstoff)

© IOLITEC 2018

 O_{2}

- In combination with a fuel cell the system resembles a zinc air battery
- **Rechargeable zinc air batteries** are characterized by many unsolved problems

SYSTEM COMPARISON WITH TRADITIONAL ELECTROCHEMICAL STORAGE: ELECTROLYZER

Zn-H2 storage

- Energy is stored in form of deposited Zn
- Hydrogen is released when needed

Electrolyzer + hydrogen tank

- Hydrogen is produced when electricity is available
- Energy is stored in form of pressurized hydrogen

Two use cases

Deliver electricity on demand, independent from fluctuating energy source

Deliver hydrogen on demand, independent from fluctuating energy source

Plausibility of 50 % efficiency of electricity storage

Zn-H2 storage in combination with Fuel cell

practical η values at 10 mA/cm2, RT

PRELIMINARY RESULTS: CYCLE STABILITY AND ENERGY EFFICIENCY

12

Universitä

The core system: Zn-H2 storage cell

Parallel stack in cell Serial connection of cells

The core system: Zn-H2 storage cell

Serial connection of bipolar cells in a stack

System and components

- Dedicated power electronics and dc/dc converters for charge and discharge
- Demonstrator: Zn-H2 stack 350 W, fuel cell 120 W

IZM

Thank You

Contact:

Dr. Robert Hahn

Fraunhofer IZM

robert.hahn@izm.fraunhofer.de

+49 30 46403611

+49 1607321501

IZM

Reaction equations and equilibrium potentials

discharge (Zn-> <u>ZnO</u>)	reaction	potential [V]	
anode (-)	$Zn + 20H^- \rightarrow ZnO + H_2O + 2e^-$	$E_0 = -1,26$	(1)
	$Zn + 40H^- \rightarrow Zn(0H)_4^{2-} + 2e^-$		(1.1)
	$Zn(OH)_4^{2-} \rightarrow ZnO + H_2O + 2OH^-$		(1.2)
cathode (+)*	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	$E_0 = -0,83$	(2)
		$E_{0_Cell} = 0,43$	
charge (<u>ZnO</u> ->Zn)	Reaktion (Edukte; Produkte)	Potential [V]	
cathode (-)	$ZnO + H_2O + 2e^- \rightarrow Zn + 2OH^-$	$E_0 = -1,26$	(3) 🔶
	$ZnO + H_2O + 2OH^- \rightarrow Zn(OH)_4^{2-}$		(3.1)
	$Zn(OH)_4^{2-} + 2e^- \rightarrow Zn + 4OH^-$		(3.2)
anode (+)*	$20H^- \rightarrow 1/2 \ O_2 + H_2 O + 2e^-$	$E_0 = 0,4$	(4)
		$E_{0_{Cell}} = 1,66$	
Possible electrolysis			
during charge	reaction	potential [V]	
cathode (-)	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	$E_0 = -0,83$	(2) 🗲
anode (+)*	$20H^- \rightarrow 1/2 \ O_2 + H_2 O + 2e^-$	$E_0 = 0,4$	(4)
		$E_{0_Cell} = 1,23$	

Zn-H2 is not a Battery

- The electrical energy is stored in form of metallic zinc like in alkaline, NiZn or Zn-air batteries
- Rechargeable Zn-air and NiZn batteries are still characterized by low cycle stability while the Zn-H2 system can be cycled with high stability
- The electrodes are much more compact, hence the energy density is higher compared to the batteries

- It is a battery that releases gas during charge and discharge
- It is a battery that must be supplied with water during discharge
- Self-discharge of the highly active Zn-electrolyte system needs special consideration
- It is a battery that needs additional components like H₂O supply, liquid separator, dryer, sensors
- There are some restriction in charge and discharge currents special cycling routines required

Zn-H2 is not an Electrolyser

- It produces hydrogen and oxygen
- It uses electro-catalyst electrode for hydrogen and oxygen evolution
- It needs clean water supply
- The mixing of hydrogen and oxygen is only a minor concern because the gasses are produced sequentially (oxygen during charge and hydrogen during discharge)
- Hydrogen production is performed with the cells own energy, during discharge electricity and hydrogen is supplied, no external power required
- Due to the storage function, the gas electrode area is compared to electrolyzer much larger only low current density reaction must be optimized and higher energy efficiency can be achieved
- The same electrode is used for OER and HER, hence the electrochemical and mechanical stability requirements are critical
- Only very low cost catalysts and catalyst support materials can be used, the fabrication technology must be dedicated to mass fabrication at lowest cost

